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Thin-Film Flow Influenced by Thermal Noise
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We study the influence of thermal fluctuations on the dewetting dynamics of thin liquid
films. Starting from the incompressible Navier-Stokes equations with thermal noise, we
derive a fourth-order degenerate parabolic stochastic partial differential equation which
includes a conservative, multiplicative noise term—the stochastic thin-film equation.
Technically, we rely on a long-wave-approximation and Fokker–Planck-type arguments.
We formulate a discretization method and give first numerical evidence for our con-
jecture that thermal fluctuations are capable of accelerating film rupture and that dis-
crepancies with respect to time-scales between physical experiments and deterministic
numerical simulations can be resolved by taking noise effects into account.
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1. INTRODUCTION

Thin films of liquid are ubiquitous in nature and play a great role in technolog-
ical processes. Progressive miniaturization in the production of semiconductor
devices requires nowadays thicknesses of photo resists of the order of a few
nanometers. In order to guarantee stability of these films reliable predictions of
the dynamics (in particular of the dewetting dynamics) gain an important role.
But also in the emerging field of micro and nano fluidics, i.e., the art of miniatur-
izing chemical devices, one deals with fluid films of down to a few nanometers
thickness.
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The flow of viscous liquid films with thicknesses in the range of a few
nanometers up to a micron has been studied extensively in the thin-film limit of
hydrodynamic free surface flow. (1) While earlier studies focused on spreading of
droplets and the moving three phase contact line, the dewetting of thermodynami-
cally unstable liquid films and the resulting dewetting patterns have attracted more
attention recently. In particular, the development of efficient numerical algorithms
for the thin-film equation (see (2,3) and the references therein) and of quantita-
tive methods based on integral measures (Minkowsky functionals) for describing
and comparing film morphologies (4) made it possible to test the thin-film equa-
tion quantitatively. While the spatial stochastic features of the pattern formation
process which appear in the experiment are the same as those predicted by the thin-
film equation, (5) the time evolution of the patterns does not match. The quantities
which characterize the morphology of the experimental films as a function of time
indicate a power law behavior while the numerical results for the deterministic
thin film equation show two distinct time scales, one for film rupture and one for
droplet formation, see. (6) We take this as a hint that thermal noise might play a
role in the dynamics of the dewetting of these thin films. Power law behaviour
can indicate the absence of explicit time scales, which is characteristic for thermal
fluctuations modeled by white noise.

The effect of thermal noise has already been introduced phenomenologically
into hydrodynamics by Landau and Lifšic. (7) A microscopic justification for the
noisy hydrodynamical equations has been provided by showing that the form
proposed can be derived from the deterministic Boltzmann equation by a long-
wave approximation. (8) The noisy hydrodynamical equations have been discussed
for example in the context of turbulence in randomly stirred fluids (9,10) as well as
for the onset of instabilities in Rayleigh-Bénard convection(11) and Taylor-Couette
flow. (12)

Comparing molecular dynamics simulations and numerical solutions of de-
terministic and stochastic hydrodynamical equations (13) it has recently become
evident that noise plays a significant role in the breakup of fluid nanojets. The
geometry is cylindrical rather than planar but a long-wave approximation similar
to the one discussed in this paper is used. This result corroborates our conjecture
that thermal noise can play a significant role in the dewetting and flow of thin
liquid films.

The importance of thermal fluctuations in film rupture has been demonstrated
by direct visual observation in a colloidal system with confocal microscopy. (14)

Suspended colloids can phase-separate into regions of high density (“colloidal
liquid”) and low density (“colloidal gas”). The coalescence of two drops of “col-
loidal liquid” involves the rupture of a thin film of “colloidal gas” which has
been monitored directly. The importance of fluctuations is obvious from visual
inspection but has not been quantified yet.
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Let us give the outline of the paper. Starting from the incompressible Navier-
Stokes equations with thermal noise, we formulate in Sec. 2.1 the free surface
problem for thin-film flow under the influence of fluctuations. In Sec. 2.2, we derive
a first version of a stochastic thin-film equation via long-wave approximation. It
contains a rather complicated noise term which involves a stochastic integral
with respect to the vertical coordinate. By requiring the corresponding Fokker–
Planck equations to be identical, we come up with a simplified stochastic thin-film
equation which involves a noise term only depending on planar coordinates and
time. The scaling of the off-diagonal components of the noisy stress tensor is
crucial for the formulation of both equations. Our choice guarantees that the
invariant measure is given by the Gibbs distribution.

Section 3 is devoted to the study of effects thermal fluctuations have on
dewetting dynamics. We base our results on numerical simulations and propose a
finite-volume/finite-element scheme for the discretization of the stochastic thin-
film equation first. Our numerical experiments give first indication that noise
can accelerate the transition from a nearly flat film to a locally ruptured film. In
contrast, the time-scale of droplet formation is not affected by fluctuations in these
experiments. Therefore, the ratio

rupture time-scale

droplet-formation time-scale

is diminished. This leads us to believe, that discrepancies with respect to time-
scales between deterministic numerical simulations and physical experiments ob-
served in(5) might be overcome by taking thermal fluctuations into account. To
give further evidence for this conjecture, we estimate the strength of the noise term
in the experimental setting of. (5) It turns out that the acceleration factor observed
in the numerical experiments presented here has the right order of magnitude to
resolve the aforementioned discrepancies.

Finally, Appendix A contains the computation of the Kramers–Moyal coeffi-
cients needed in Sec. 2.2, and Appendix B reviews the numerical scheme for the
deterministic thin-film equation. In Appendix C we show that the Fokker–Planck
equation of the stochastic thin film quation derived in Sec. 2.2 is independent of
the stochastic calculus (Ito or Stratonovich) used.

2. THE STOCHASTIC THIN-FILM EQUATION

2.1. Noise in the Hydrodynamic Equations

For the ease of presentation, we consider a film of an incompressible
Newtonian liquid on a one-dimensional flat substrate as sketched in Fig. 1. The
generalization to two-dimensional films is straightforward. Since we do not want
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Fig. 1. A thin liquid film on a flat one-dimensional substrate (coinciding with the x-axis). The film sur-
face (i.e., the moving boundary) is parameterized by the film thickness h(x, t). The flow is characterized
by the flow velocity u = (ux , uy ) and the pressure p.

to discuss boundary conditions at the boundaries of the substrate, we suppose the
substrate to be infinite. We assume that the liquid-vapour interface can be described
as a graph over the substrate, and we parameterize it by the film thickness h(x, t).
The incompressibility condition and the momentum conservation are given by(7)

0 = ∇ · u (1)

ρ
Du

Dt
= η ∇2u − ∇ p + ∇ · S, (2)

with the convective derivative D
Dt = ∂

∂t + u · ∇. By u and p, we denote velocity
and pressure field, respectively. The mass density ρ is constant within the fluid
and η is the shear viscosity. The random stress fluctuations S represent the effect
of molecular motion. S is symmetric, has zero mean 〈S〉 = 0 and the correlator
is given as〈

Si j (r, t)Slm(r′, t ′)
〉 = 2 η kB T δ(r − r′) δ(t − t ′) (δil δ jm + δim δ jl). (3)

S is spatially uncorrelated, and therefore the divergence of S in Eq. (2) poses
mathematical questions we do not want to enter into at this point. From a physical
point of view, hydrodynamical equations are only valid at a scale large as compared
to the molecular scale. Therefore, δ(r − r′) in Eq. (3) might be replaced by a
correlation function of small but finite width. In order to show that equilibria are
charcterized by Gaussian velocity distributions as required by thermodynamics we
need spatially uncorrelated noise. For this reason, we keep the notation common
in physical literature.

We assume that the substrate is impermeable and that there is no slip between
the fluid and the substrate. The boundary conditions at the substrate are therefore

uy = 0 and ux = 0 at y = 0. (4)
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At the free surface z = h(x, t) the normal and tangential stresses are balanced.
Neglecting the exchanges with the vapour phase, the boundary condition is

(σ + S) · n̂ = (� + γ κ) n̂, (5)

where σi j = η (∂i u j + ∂ j ui ) − p δi j is the stress tensor for an incompressible
fluid, κ is the mean curvature of the surface, n̂ = (−∂x h, 1)/

√
1 + (∂x h)2 the

surface normal vector, and γ is the surface tension coefficient. For later use
we also introduce the tangent vector t̂ = (1, ∂x h)/

√
1 + (∂x h)2 to the surface.

The so-called disjoining pressure � = − ∂	(h)
∂h is the negative derivative of the

effective interface potential 	(h) with respect to the film thickness h. The origin
of the disjoining pressure are molecular interactions between liquid molecules
and between liquid and substrate molecules. The disjoining pressure determines
the characteristic wetting properties of a substrate, for instance the equilibrium
contact angle. In general, the disjoining pressure can depend on x and y. Additional
external forces on the fluid such as gravity or Marangoni forces can be included
in a straightforward manner.

Finally, assuming that the fluid is non-volatile, the component of the flow
velocity normal to the surface is identical to the surface normal velocity and we
get

∂h

∂t
= uy − ux ∂x h at y = h (6a)

= −∂x j, (6b)

with the total flow current in the film at position x

j(x, t) =
∫ h(x,t)

0
ux (x, y, t) dy. (7)

2.2. Long-Wave Approximation of Stochastic

Navier-Stokes Equations

The long-wave approximation permits to approximate the free surface prob-
lem for thin films stated in Sec. 2.1 by a dimension-reduced evolution equation
for the film height. The small parameter ε = d/λ � 1 in this approximation is the
ratio of the characteristic film height d and the length scale λ over which the film
thickness and substrate properties (e.g., �) vary laterally, see Fig. 1. This approach
is well described in(1) but we will recapitulate the main steps with an emphasis
on the noise term S, which was not considered in. (1) In order to implement the
long-wave expansion, we express all quantities in Eqs. (1)–(7) in terms of dimen-
sionless quantities denoted by a tilde. Introducing a characteristic velocity U in
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the film parallel to the substrate, we use the rescaling relations

x = λ x̃, y = d ỹ, p = U η

d ε
p̃,

∂x = 1

λ
∂̃x , ∂y = 1

d
∂̃y, � = U η

d ε
�̃,

ux = U ũx , uy = ε U ũy, t = λ

U
t̃,

γ = U η

ε3
γ̃ , κ = ε2

d
κ̃, h = d h̃,

Sxy = U η

d
S̃xy (Sxx ,Syy) = U η

λ
(S̃xx , S̃yy) T = η U λ2

ε kB
T̃ .

(8)

Thereby we assume that the components of the noise tensor scale like the dominant
term (lowest order in ε) in the corresponding components of the strain tensor. For
Sxx andSyy these are η ∂x ux and η ∂yuy , respectively. ForSxy (which is equal toSyx

due to symmetry) this is η ∂yux . Hence, the noise tensor will appear in the lowest
order equations of motion in such a way that the stationary height distribution
of the resulting thin-film Eq. (17) is the one required by thermodynamics (see
Sec. 2.3). This justifies our way of rescaling retrospectively. The final result would
remain unchanged if Sxx and Syy scaled in the same way as Sxy . In addition to
ε � 1, lubrication approximation assumes that the flow is not too fast and that the
viscosity is not too low so that the Reynolds number Re = ρ U d/η is of order one
or smaller. We note that the surface tension coefficient γ is scaled with ε−3. This
ensures that surface tension is kept in the equations to lowest order in the thin-film
limit ε → 0. Unless explicitly stated otherwise, all quantities are nondimensional
from this point on and we therefore drop the tilde.

The incompressibility condition Eq. (1) remains unchanged under these
rescalings. For the parallel and normal components of the momentum Eq. (2)
we get

ε Re
Dux

Dt
= (

ε2 ∂2
x + ∂2

y

)
ux − ∂x (p + �)

+ ε2 ∂xSxx + ∂ySyx (9a)

ε3 Re
Duy

Dt
= ε2

(
ε2 ∂2

x + ∂2
y

)
uy − ∂y(p + �)

+ ε2 ∂xSxy + ε2 ∂ySyy . (9b)

Clearly, the noise term will only appear in the equation for ux , and we get the
principal equations

0 = −∂x (p + �) + ∂2
y ux + ∂ySyx (10a)

0 = −∂y(p + �). (10b)
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The boundary conditions at the substrate (4) as well as the kinematic con-
dition (6) remain unchanged. We discuss the boundary conditions at the surface
(5) in the following. The curvature is to lowest order κ = ∂2

x h + O
(
ε4
)

and the
normal component of the normal surface stress is n̂ · (σ + S) · n̂ = −p + O

(
ε2
)
.

Therefore we get the boundary condition for the pressure at the liquid-vapor
interface

p = −γ ∂2
x h at y = h. (11)

The tangential component of the normal surface stress is

t̂ · (σ + S) · n̂ = (∂x h) (∂yux + Syx )

|∂x h| + O
(
ε2
)

at y = h (12)

and we obtain the following boundary condition for ux at the film surface

∂yux + Syx = 0 at y = h. (13)

Apparently, only Syx = Sxy appears in the lowest order Eqs. (10)–(13). For sim-
plicity of notation we omit the subscript xy in the following by setting S = Sxy .

In order to calculate ux we integrate Eq. (10a) twice with respect to y and
determine the two integration constants using the boundary conditions Eqs. (4)
and (13). Since the reduced pressure p + � is independent of y (see Eq. (10b),
a first integration w.r.t. the vertical coordinate from h to y yields together with
Eq. (13)

(y − h) ∂x (p + �) = ∂yux + S. (14)

Integrating with respect to the vertical coordinate from zero to y gives

ux =
(

y2

2
− y h

)
∂x (p + �) −

∫ y

0
S(y′) dy′, (15)

where we used the substrate boundary condition Eq. (4). Inserting Eq. (15) into
the kinematic condition (6) leads to the stochastic thin-film equation. Since the
reduced pressure p + � does not depend on y, we can evaluate p + � at the film
surface and replace p by the boundary condition (11). Rewriting � in terms of
the effective interface potential 	, we get

∂h

∂t
= ∂x

{
h3

3
∂x

[
	′(h) − γ ∂2

x h
]+

∫ h

0

∫ y

0
S(y′) dy′ dy

}
. (16)

Integrating the noise term by parts with respect to y entails

∂h

∂t
= ∂x

{
h3

3
∂x

[
	′(h) − γ ∂2

x h
]+

∫ h

0
(h − y)S(y) dy

}
. (17)

The correlator of the nondimensional noise S is〈
S(x, y, t)S(x ′, y′, t ′)

〉 = 2 T δ(x − x ′) δ(y − y′) δ(t − t ′). (18)
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In contrast to the thermal noise in the original hydrodynamic equations (2),
the noise term in Eq. (17) is multiplied by a function which depends on h(x, t)
and therefore on the noise, too. Now the question arises which meaning to give
to this product (or the corresponding stochastic integral

∫∫
(h − y)S dy dt). Two

common ways of interpretation are Ito and Stratonovich calculus. In Appendix
C we show that the corresponding Fokker–Planck Eq. (47) does not depend on
the choice of calculus. This is mainly due to the conservative character of the
noise in Eq. (17). Therefore Ito and Stratonovich calculus are equivalent here. For
simplicity we will use the Ito formalism in the following.

2.3. Simplifying the Noise Term

The noise term in Eq. (17) still depends on the vertical coordinate. This is
in contradiction to the spirit of long-wave approximation to model film evolution
solely in terms of time and planar coordinates. In this section we will show that
the following stochastic partial differential equation involving a multiplicative
conserved noise term depending only on x and t

∂h

∂t
= ∂x

{
h3

3
∂x

[
	′(h) − γ ∂2

x h
]+

√
h3

3
N
}

, (19)

with

〈N (x, t)〉 = 0 and
〈
N (x, t)N (x ′, t ′)

〉 = 2 T q(x − x ′) δ(t − t ′), (20)

and q(x) = δ(x) can be considered identical to Eq. (17) in an appropriate weak
sense.4 Let us make this more precise. Initially, our goal has been to investigate the
impact thermal fluctuations have on time-scales of dewetting. Therefore, we are
mostly interested in results on the distribution of film profiles at given time-instants
t > 0. For this reason, we will weakly identify stochastic partial differential equa-
tions if the time-evolution of the corresponding distribution functions is identical.
In this spirit, we will discretize Eqs. (17) and (19) in space and we will show
that the corresponding systems of stochastic differential equations gives rise to
the same Fokker–Planck equation, as the spatial discetization parameter tends to
zero.

Moreover, we will show that the distribution function which satisfies the
detailed balance condition is given by

Weq[h] = Z−1 exp

(
− 1

T
H[h]

)
(21)

4 In Eq. (20) we introduce the symmetric correlator q(x) ≥ 0 because in Sec. 3.2 we will consider
also finite correlation lengths in space to study the influence of spatial correlations on the dewetting
dynamics.
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with the partition function Z (a normalization constant) and the effective interface
Hamiltonian

H[h] =
∫

	(h) + γ

2
|∂x h|2 dx, (22)

as expected from thermodynamics. (15) The integrand 	(h) + γ

2 |∂x h|2 is the local
energy density for the given interface profile h(x).

Note that Eq. (19) has some features in common with stochastic Cahn-Hilliard
equations (see for instance(16,17) and the references therein). Both equations are
fourth-order parabolic, and they admit for Lyapunov-functionals of a similar struc-
ture. In contrast to the stochastic Cahn-Hilliard equations studied so far in the lit-
erature, the parabolicity in (19) degenerates. For this reason, analytical techniques
to establish the existence of stochastic processes, as presented in (19) and in, (18)

cannot be applied.
Let us show now, that the Eqs. (17) and (19) are identical in the sense for-

mulated above. First we rewrite these equations using the Hamiltonian in Eq. (22)
and the mobility factor M(h) = h3

3 . We get

∂h

∂t
= ∂x

[
M(h) ∂x

δH
δh

+
∫ h

0
(h − y)S(y) dy

]
and (23)

∂h

∂t
= ∂x

[
M(h) ∂x

δH
δh

+
√

M(h)N
]

, (24)

respectively. Next we discretize in space with lattice constant a. The film thickness
then becomes a vector h with hi = h(a i). We replace the integration with respect
to x in Eq. (22) by the corresponding Riemann sum

H(h) = a
∑

i

Ei (h), (25)

with the local energy density at lattice site i

Ei = 	(hi ) + γ

2
[(∇s · h)i ]

2
. (26)

Here we use the symmetric finite difference operator (∇s · f)i = 1
2 a ( fi+1 − fi−1).

We can also interpret ∇s as an infinite matrix with entries ∇s
i j = 1

2 a (δi, j−1 − δi, j+1)
and ∇s · f as the multiplication of the matrix with a vector. In the discretized
equation, the variational derivative δH

δh becomes the sum over the partial derivatives
of H(h) with respect to h, namely(

δH(h)

δh

)
i

=
∑

j

∂ E j (h)

∂hi
= 1

a

∂H(h)

∂hi
. (27)
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Note that the variational and the partial derivative of H(h) with respect to h differ
by a factor a.

We discretize the noise terms S

i (t) = (

S
(t)
)

i
= S(a i, a 
, t) and Ni (t) =

(N (t))i = N (a i, t). The discretized versions of Eqs. (17) and (19) are then

∂h

∂t
= ∇s · j with (28a)

ji = M(hi )

(
∇s · δH

δh

)
i

+
int(hi /a)∑


=0

a (hi − a 
)S

i (28b)

and
∂h

∂t
= ∇s · j with (29a)

ji = M(hi )

(
∇s · δH

δh

)
i

+ Ni , (29b)

respectively. With int(hi/a) we denote the integer part of hi/a. If hi is not an integer
multiple of a, we make an error ofO (a) by approximating the integral with respect
to y by summation with respect to 
. However, we are interested in the limit a → 0
and we assume here that this error is not important. The discretized correlators
are obtained from Eqs. (18) and (20) using δ(x − x ′) 	→ 1

a δi j etc. and we get

〈
S


i (t)Sm
j (t ′)

〉 = 2 T

a2
δi j δ
m δ(t − t ′) (30)

〈
Ni (t)N j (t

′)
〉 = 2 T

a
δi j δ(t − t ′). (31)

With this we can write the discretized thin-film Eqs. (28) and (29) as

∂h

∂t
= F +

∞∑

=0

∇s ·
[
q


(h)S
(t)
]

and (32)

∂h

∂t
= F + ∇s · [q(h)N (t)

]
, (33)

with

q
(x) =
{

0 for 
 > x/a

a (x − a 
) for 0 ≤ 
 ≤ x/a
and (34)

q(x) =
√

x3

3
=
√

M(x). (35)

Here we introduce the following notation. For a given scalar function f (x) and
two discretized functions (i.e., vectors) g and h we define (f(g)h)i = f (gi ) hi .
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With this notation, we can write the deterministic part in Eqs. (32) and (33) as

F = ∇s ·
[
M(h)

(
∇s · δH

δh

)]
. (36)

In order to calculate the Fokker–Planck equation corresponding to the
Eqs. (32) and (33) we need the first and second Kramers–Moyal expansion coef-
ficient. The coefficients for Eq. (33) are given in the literature (20,21) and those for
Eq. (32) we calculate in Appendix A. The expansion coefficients of order three
and higher are zero because both Eqs. (32) and (33) are Markovian. (20,21)

In Ito calculus the first Kramers–Moyal coefficients of Eqs. (32) and (33) are
equal and simply given by the deterministic part

D(1)(h) = F(h), (37)

see Eqs. (A.11) and (A.17), respectively. From Eqs. (A.13) and (A.18) we get with
G


i j (h) = ∇s
i j q
(h j ) and Gi j (h) = ∇s

i j q(h j ) the second coefficients for Eqs. (32)
and (33),

D(2S)
i j (h) = T

a2

∑
k

∞∑

=0

∇s
ik q
(hk) ∇s

jk q
(hk) and (38)

D(2N )
i j (h) = T

a

∑
k

∇s
ik q(hk) ∇s

jk q(hk), (39)

respectively. Since the ∇s
ik on the right-hand side of Eqs. (38) and (39) are only

the components of the symmetric finite difference operator ∇s , i.e., numbers, and
not the operator itself, we can rearrange the factors in the summands to get

D(2S)
i j (h) =

∑
k

∇s
ik ∇s

jk

T

a2

∞∑

=0

q
(hk) q
(hk) and (40)

D(2N )
i j (h) =

∑
k

∇s
ik ∇s

jk

T

a
q(hk) q(hk). (41)

Apparently a sufficient condition for the two coefficients to be equal is

a [q(x)]2 =
∞∑


=0

[q
(x)]2. (42)

With the definition in Eqs. (34) and (35) the condition above is satisfied up to
order O (a) since the sum on the right-hand side gives a x3

3 + a2 x2

2 + a3 x
6 and the

left-hand side is a x3

3 . In other words, in the continuum limit a → 0 the coefficients
are the same and in this sense, the Langevin Eqs. (17) and (19) are equivalent.
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With q(hk) from Eq. (35) we can write the second Kramers–Moyal coefficient as

D(2N )
i j (h) =

∑
k

∇s
ik

T

a
M(hk) ∇s

jk . (43)

The Fokker–Planck equation corresponding to Eq. (33) gives the time evo-
lution of the probability density W(h) of finding h as solution of Eq. (33) at
time t

dW(h)

dt
= − ∂

∂h
·
{[

D(1)(h) − ∂

∂h
· D(2N )(h)

]
W(h)

}
. (44)

The discrete analog to the canonical distribution in Eq. (21) is Weq(h) =
Z−1 exp

(− 1
T H(h)

)
. In order to show that the canonical distribution satisfies

the detailed balance condition, we first demonstrate that the diffusion term (the
term ∂

∂h · D(2N )(h) within the square brackets) can be written as ∇s · M(h)∇s · ∂
∂h .

First we have to write the diffusion term with the help of Eq. (43) with indices and
apply the product rule for the derivative with respect to h∑

j,k

T

a

∂

∂h j
∇s

ik M(hk)∇s
jkW(h)

=
∑

j,k

T

a

[
∇s

ik

∂ M(hk)

∂h j
∇s

jkW(h) + ∇s
ik M(hk)∇s

jk

∂W(h)

∂h j

]
. (45)

The first term on the right-hand side vanishes because ∂ M(hk )
∂h j

= δ jk
∂ M(h j )

∂h j
is sym-

metric in j and k while ∇s
jk is antisymmetric. We then transpose ∇s

jk in the
second term (which produces a minus sign) and we get for the Fokker–Planck
equation

dW(h)

dt
= − ∂

∂h
·
[
∇s · M(h) · ∇s ·

(
δH(h)

δh
+ T

δ

δh

)
W(h)

]
. (46)

Here we insert the deterministic part from Eq. (36) and make use of 1
a

∂
∂h = δ

δh , see
Eq. (27). In the continuum limit a → 0 the Fokker–Planck equation has the form

dW[h]

dt
= −

∫
δ

δh

[
∂x M(h)∂x

(
δH[h]

δh
+ T

δ

δh

)
W[h]

]
dx . (47)

A sufficient condition for detailed balance is that the probability current density,
i.e., the term in square brackets in Eq. (46) or (47), is identical zero. The reason
for this is that the height function h (as well as the discrete h) is an even function,
meaning it does not change the sign under time reversal (in contrast to velocities for
example), see (21) (Sec. 5.3.5, comment (i)). Using the chain rule for the derivative
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of (21) with respect to the film thickness this is obviously the case for the discrete
Eq. (46) as well as for the continuum Eq. (47).

3. THERMAL NOISE AND TIME-SCALES OF DEWETTING

In this section, we present numerical studies on the effect thermal noise has
on dewetting dynamics. Our objective is to give—at the moment on a qualitative
level only—numerical evidence for the conjecture that thermal fluctuations may
accelerate the transition from a flat, slightly perturbed film to a locally ruptured
film. After the first instant of local film rupture, we expect the deterministic
terms, i.e., those containing the augmented Laplace pressure −∇2

x h + 	′(h), to
dominate the dynamics again—at least under the assumption of moderate noise
intensities. This way, we expect noise terms to overcome the discrepancies in the
ratio of dewetting time-scales between experiment and deterministic numerical
studies which were observed in. (5) Before presenting our numerical results, let
us formulate a numerical scheme for the computation of sample paths of the
stochastic process related to the stochastic thin-film Eq. (19).

The particular structure of the noise term (convective, multiplicative) as
well as the degeneracies and singularities inherent in the deterministic thin-film
equation make the discretization of Eq. (19) an intricate problem. Although the
deterministic equation is fourth-order and comparison principles do not hold,
rigorous mathematical results show that globally non-negative solutions exist,
provided initial data are non-negative, see.(3,22−25) This is a consequence of
the mobility M(h) vanishing at zero. To guarantee non-negativity properties of
discrete solutions, it is crucial that the numerical scheme mimics the degeneracy
of the mobility (see our choice of harmonic integral means in Appendix B). If the
effective interface potential is +∞ at zero film thickness with sufficiently high
order, even a pathway to strict positivity opens up. To establish this, it is sufficient
to split 	 into a sum of a non-negative convex and a concave component and to
discretize the first one implicitly, the second one explicitly. Finally, as the stochas-
tic process N (x, t) appears inside a convective term, numerical diffusion becomes
an issue. We use upwinding concepts to minimize this effect.

To have a perspective of numerical analysis, we will formulate N (x, t) in the
framework of Q-Wiener processes. It turns out that the corresponding structure
carries over to the discrete setting.

Summing up, the plan of this section is as follows. First, we formulate Eq. (19)
as an initial-boundary-value problem and we recall the essentials of the concept of
Q-Wiener processes. We transfer this concept to a discrete setting and formulate a
scheme for the convective term ∂x [

√
M(h)N (x, t)]. For the reader’s convenience,

the main ideas for the efficient discretization of the deterministic thin-film equation
are summarized in Appendix B. At the end of Sec. 3.1, we arrive at a numerical
scheme. In Sec. 3.2 we present first numerical results.
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3.1. A Numerical Scheme for the Stochastic Thin-Film Equation

In this section, we consider an initial-boundary-value problem related to the
stochastic thin-film Eq. (19). In particular, we give a meaning to the stochastic
process N (x, t) in terms of Q-Wiener processes. This formalism at hand we will
formulate a numerical method subsequently. We will consider Eq. (19) on the
space-time cylinder �T := (0, L) × (0, T ) subjected to spatially periodic bound-
ary conditions. We choose non-negative initial data with finite energy. We require
the correlation function q introduced in Eq. (20) to be L−periodic. Recall that it
is even and non-negative, too. For simplicity5 we assume q to be continuous. It is
well known (see, e.g. (26) or (27)) that space-time noise N (x, t) satisfying Eq. (20)
can be written as the formal time-derivative of the Q-Wiener process W (x, t),
namely

N (x, t) = ∂W

∂t
(x, t) =

+∞∑
k=−∞

λk β̇k(t) gk(x). (48)

The βk , k ∈ Z, form a family of mutually independent Brownian motions with re-
spect to time and the dot denotes the time-derivative. λ2

k, k ∈ Z, are the eigenvalues
of the Hilbert-Schmidt operator Q

(Q f )(x) := 2 T

∫ L

0
q(y − x) f (y) dy (49)

corresponding to the complete system of orthonormal eigenfunctions

gk(x) :=




√
2
L cos(2π k x

L ) for k ∈ N√
1
L for k = 0√
2
L sin(2π k x

L ) for − k ∈ N.

(50)

Since q is real and symmetric we have λ2
k = λ2

−k ≥ 0.
For the discretization of Eq. (19), a number of side conditions have to be

respected. To enhance the numerical performance, it is recommended to solve the
equation in a finite-element/finite-volume setting. An approach based on Fourier-
series (suggested by the trigonometric eigenfunctions of Q in Eq. (50)) has the
disadvantage that the nonlinearities inherent in Eq. (19) give rise to linear systems
involving full matrices. In addition, it is not known whether a Fourier-approach

5 Since only spatially discrete noise enters the numerical simulations, assuming q(x) to be continuous
does not mean any restriction—even not in the case of discrete approximations of white noise. Just
assume supp q to be sufficiently small.
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allows for non-negativity results for discrete solutions—in particular if the effec-
tive interface potential is not +∞ at h = 0.

We describe now the ingredients of the numerical scheme we are going
to use. For N ∈ N we are given a uniform discretization of the interval � =
[0, L] with grid parameter a := L

N and nodal points xi := i a, with i = 0, . . . , N .

Corresponding to this, we consider the periodic linear finite-element space

V N
per := {v ∈ H 1

per (�) : v|(xi ,xi+1) is linear ∀ i = 0, . . . , N − 1}.

Here, H 1
per (�) := {v ∈ H 1

loc(R) : v(x) = v(x + L) a.e. in R} where H 1
loc(R) is the

usual Sobolev space of measurable, locally square-integrable functions which have
locally square-integrable weak derivatives of first order. A basis of V N

per is given
by functions φ j ∈ V N

per satisfying φ j (xi ) = δi j , i, j = 1, . . . , N . We introduce
the nodal projection operator IN : H 1

per (�) → V N
per which maps u ∈ H 1

per (�) to
the unique element IN u ∈ V N

per satisfying u(xi ) = IN u(xi ) for all i = 0, . . . , N .
The graph of IN u is a polygon through the points (xi , u(xi )), i = 0, . . . , N . This
way, we may define the lumped masses scalar product

(�,�)N :=
∫ L

0
IN (� · �). (51)

The diagonal and positive definite lumped mass matrix MN is given by (MN )i j =
(φi , φ j )N = a δi j , and L N stands for the stiffness matrix (L N )i j = (∇φi ,∇φ j ),
where we write (u, v) for the usual L2−scalarproduct on �.

In the following H n ∈ V N
per denotes the discrete approximation to the solution

h(x, tn) of Eq. (19) after n time steps. Introducing the coefficient vector H̄ ∈ R
N ,

we can write H n = ∑N
i=1 H̄ n

i φi .

Discretization of the stochastic part. Let us concentrate now on the stochastic
part of Eq. (19). Ignoring for a moment the deterministic terms on the right-hand
side, we are formally left with the scalar conservation law

∂h

∂t
= ∂x

[√
M(h)N (x, t)

]
. (52)

We discretize this equation in two steps. Formulating first a discretization of the
noise term, we insert it in the second step into a standard upwind scheme for the
convective term.

In Eq. (48), the noise term is written as an infinite sum of mutually indepen-
dent stochastic processes. In the discrete setting, the number of processes is to be
chosen identical to the dimension of V N

per . Therefore, we need only N processes,
and we discretize the correlation function in the following way. For each nodal
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point i = 0, . . . , N , we consider

qNi := a−1
∫ xi + a

2

xi − a
2

q(x) dx (53)

as the discrete substitute of q. By periodicity of q, we have qN0 = qN N . Extending
qNi , i = 0, . . . , N , to a mapping q : Z × Z → R

+
0 according to the rules

qi j = qi+l j+l and qi+N j = qi j+N = qi j foreach i, j, l ∈ Z, (54)

we get a discrete substitute for the Hilbert-Schmidt operator Q. It is the operator
QN : R

N → R
N which for y ∈ R

N is defined as

(QN y)i := 2 T a
N∑

j=1

qi j y j . (55)

Note in particular that QN = 2 T Id
R

N if q|(−L/2,L/2) is a continuous approximation
of δ(x) supported in (−a/2, a/2). The following lemmata can easily be proven.

Lemma 3.1. Let N ∈ N be an odd number. For k ∈ {− N−1
2 , . . . , N−1

2 } consider
gk ∈ R

N defined as gk
i := gk(xi ), i = 1, . . . , n. Then there exist numbers σ 2

k (N ),
k ∈ {− N−1

2 , . . . , N−1
2 }, with σ 2

−k(N ) = σ 2
k (N ), such that

QN · gk = σ 2
k (N ) gk ∀ k ∈

{
− N − 1

2
, . . . ,

N − 1

2

}
. (56)

The gk , k = − N−1
2 , . . . , N−1

2 form an orthonormal basis of R
N with respect to the

scalar product 〈x, y〉N := a
∑N

i=1 xi yi .

If q ∈ L2(0, L) with λ2
k , k ∈ Z, the eigenvalues of the corresponding Hilbert-

Schmidt operator Q, then we have for each k ∈ Z

lim
N→∞

σ 2
k (N ) = λ2

k . (57)

Lemma 3.2. Let N ∈ N be an odd number. For k ∈ {− N−1
2 , . . . , N−1

2 }, the
functions IN gk form an orthonormal basis of V N

per with respect to the lumped
masses scalar product (·, ·)N .

For a mutually independent family of Brownian motions βk with respect
to time, k ∈ {− N−1

2 , . . . , N−1
2 }, we consider the spatially discretized QN -Wiener

process Wa(x, t) and the corresponding spatially discrete noise

Na(x, t) := ∂Wa

∂t
(x, t) =

N−1
2∑

k=− N−1
2

σk(N ) β̇k(t) IN gk(x), (58)

for which we can easily establish the following results.
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Lemma 3.3. For times t, s ∈ [0, T ], a position x ∈ [0, L], and node num-
bers i, j ∈ {1, . . . , N } we have 〈Na(x, t)〉 = 0 and 〈Na(xi , t)Na(x j , s)〉 = 2 T δ

(t − s) qi j .

Note that this way the structure of Q−Wiener-processes is transferred to the
discrete setting. In fact, (49) has its analogue in (55), the eigenfunctions IN gk are
orthonormal w.r.t. the lumped masses scalar product, and the properties stated in
(20) correspond to those stated in Lemma 3.3.

To discretize the time-Wiener-processes in the framework of Ito-calculus, we
replace β̇k(tn) at a time-step tn by the forward difference quotient

βk(tn+1) − βk(tn)

tn+1 − tn
. (59)

The difference βk(tn+1) − βk(tn) is normal distributed and the variance is given
by the time-increment τn := tn+1 − tn . On the discrete level, we approximate
the difference quotient (59) by N n

k√
τn

, k ∈ {− N−1
2 , . . . , N−1

2 }. Here, n is the index

of time-stepping, and N n
k are computer generated random numbers which are

approximately N (0, 1)−distributed. Altogether, the space-time-discrete noise term
is given by

N n
a,τn

(x) := 1√
τn

N−1
2∑

k=− N−1
2

σk(N )N n
k IN gk(x). (60)

By construction, both Na(x, t) and N n
a,τn

(x) are L-periodic in x .
The second ingredient is an upwind discretization for the scalar conservation

law in Eq. (52) subjected to periodic boundary conditions for both N and h which
is inspired by. (28) For j = 0, . . . , N − 1 we introduce

N̄ n
j+ 1

2
:= a−1

∫ x j+1

x j

N n
a,τn

(x) dx (61)

and we abbreviate

M0(h) := M(max(0, h)). (62)

Then the scheme reads as follows. Given a function H 0 := ∑N
j=1 H̄ 0

j φ j , find for

n ∈ N iteratively vectors H̄ n ∈ R
N which satisfy

H̄ n+1
j = H̄ n

j − τn

a

(
N̄ n

j+ 1
2
Mn

j+ 1
2
− N̄ n

j− 1
2
Mn

j− 1
2

)
(63)

with

Mn
j+1/2 :=



√

M0(H̄ n
j ) if N̄ n

j+ 1
2

≥ 0,√
M0(H̄ n

j+1) if N̄ n
j+ 1

2

< 0.
(64)
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Using the notation [
∂ N

E O

(√
M0(H̄ n),N n

a,τn
(·)
)]

j

= a−1
{
N̄ n

j+ 1
2
Mn

j+ 1
2
− N̄ n

j− 1
2
Mn

j− 1
2

}
, (65)

we may abbreviate

H̄ n+1 = H̄ n − τn ∂ N
E O

(√
M0(H̄ n),N n

a,τn
(·)
)

. (66)

The full time stepping scheme. Combining the scheme for the convective
part (66) with the scheme for the fourth-order equation from Eq. (B.5), we end up
with the full time-stepping scheme for Eq. (19)

H̄ n+1 + τn

a
L M

N (H̄ n+1) ·
[

1

a
L N · H̄ n+1 + 	′

+(H̄ n+1) + 	′
−(H̄ n)

]

= H̄ n + τn ∂ N
E O

(√
M0(H̄ n),N n

a,τn
(·)
)

. (67)

L M
N is the mobility weighted stiffness matrix and 	+ is the non-negative and

convex part of the effective interface potential while 	− is the concave rest term,
see Appendix B.

In the original equation Eq. (19), the function under the square root in the
prefactor of the noise term is the mobility. As shown in Sec. 2.3 this is necessary
if one wants the stationary distribution to be given by the Boltzmann weight. The
prefactor of the noise term in Eq. (67) is not the square root of the discrete mobility
Mσ defined in Eq. (B.3). This is due to the fact that it is not clear whether an upwind
scheme can be constructed using the discretized mobility. Note however that the
difference between the different mobilities is small and of order a.

3.2. Numerical Results

In physical experiments on the dewetting of liquid films on planar surfaces,
usual three different time-scales can be observed. The first one is characterized by
the time which is needed to pass from an initially nearly flat film to the first local
rupture event. Much smaller is the time-scale of droplet formation which covers
the time interval from the first rupture instant to the formation of a metastable
collection of droplets connected by ultra-thin films. The third time-scale is that
one of coarsening–it is by far the largest one (see e.g. (29) for further details).
In this subsection, we give numerical evidence for our conjecture that thermal
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Fig. 2. Snapshots at times t = 10, 12, 13, 14, 15, 15.5, 15.75, 16 for the deterministic thin-film
equation. Discretisation parameters are the grid spacing a = 2−9 L and time step τ = a5/2.

fluctuations may accelerate film rupture, i.e. diminish the ratio

rupture time-scale

droplet-formation time-scale
.

To this scope, we perform a number of numerical experiments on � = (0, L),
L = 15 and we choose the effective interface potential 	(h) := 1

30 · h−3 − 1
2 ·

h−2. Generically, our choice of correlation function q (cf. (20)) restricted to
(−L/2, L/2) is

q(x, lc) :=
{

Z−1 · exp
(− 1

2 sin2(πx
L ) L2

l2
c

)
if lc > 0

δ(x) if lc = 0.

Here, Z is chosen such that
∫ L

0 q(x, lc) dx = √
2T . Note that lc denotes the

correlation length.We probe the influence of characteristic noise parameters like
intensity T and correlation length on the dewetting dynamics. As a first step
towards studying the properties of the scheme, we monitor the dependence of
the results on various discretization parameters, too. It turns out that the effect
of noise on the droplet-formation time-scale is negligible. In that regime, the
fourth-order operator governs the evolution. In contrast, the rupture time-scale
is strongly affected by noise effects and becomes smaller monotoneously with
increasing noise intensity and decreasing correlation length.

To provide a qualitative picture, Figs. 2 and 3 show snapshots of the deter-
ministic process and of a sample path of the stochastic process under moderate
noise intensity, respectively. Note that the time of first rupture decreases from 15.5
(deterministic) to 2.98 (stochastic) whereas the time span needed to form droplets
after the first rupture event remains approximately the same. In fact, a closer look

Fig. 3. Snapshots at times t = 0.025, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 4.0 for the stochastic TFE
with correlation length lc = 0 and noise strength T = 0.00125. The discretisation parameters, initial
conditions and spatial domain size are the same as in Figure 2.
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Fig. 4. Film roughness in terms of correlation length lc: Local snapshots of the film surface at
times t = 0.025 and 0.05 for noise strength T = 4.05 × 10−3 and lc = 0, 0.5, 1 (from left to right).
Discretization with a = 2−9 L , τ = a2. For the three simulations the same sequence of random numbers
have been used.

at the numerical results reveals that the parabolic character of single droplet pro-
files is essentially not affected by the noise. This is in contrast to the planar film for
which the roughness of the film surface reflects the correlation length of the noise
(see Fig. 4 for snapshots of sample paths for processes corresponding to different
correlation lengths).

In general, this effect is the stronger, the stronger the noise intensity is.
Figure 5 provides histograms of the time of first rupture events for K = 20
realizations of stochastic processes with intensity factors T = 5 × 10−5 and
T = 1.25 × 10−3, respectively. Similarly, the noise induced acceleration is en-
hanced for decreasing correlation length and for increasing noise intensity as
shown in Table I.

As both the practical and the analytical aspects of stochastic thin-film nu-
merics constitute a vast “terra incognita,” in a first step it seems necessary to
scrutinize whether our choice of discretization parameters with respect to time or
to space might affect the first rupture instant. For white noise, Table II gives first
indication of the effects the spatial discretization has on rupture times. For a fixed
time discretization τ = a5/2 and various noise intensities there is no statistically
significant effect of spatial discretization on rupture times. In particular, this effect
is negligible compared to the effects noise intensities have on rupture. Similarly,

Fig. 5. Statistics of first-rupture time for white noise driven thin-film flow (lc = 0): Computation of
20 sample paths for T = 5 × 10−5 (left, mean value and standard deviation are (µ, σ ) = (7.1, 0.4))
and T = 1.25 × 10−3 (right, (µ, σ ) = (3.6, 0.4)) respectively. Discretization with a = 2−8 L , τ = a2.
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Table I. First-rupture time in terms of noise

intensity and correlation length

T \lc 0 0.25 0.5 1

0 16.5 16.5 16.5 16.5
5.00 × 10−5 8.9 10.0 10.2 10.3
4.50 × 10−4 6.5 7.8 8.0 8.2
1.25 × 10−3 5.2 6.6 6.7 7.0
2.45 × 10−3 4.5 5.7 5.8 6.1
4.05 × 10−3 3.9 5.1 5.3 5.5

Note. Average over two sample paths each. Discretiza-
tion a = 2−9 L , τ = a2.

for various noise intensities and a fixed spatial grid parameter a = 2−9L , Fig. 6
indicates that the particular choice of time-increments does not have significant
impact on rupture times. These findings are further supported by formal integral
estimates based on Ito’s formula which will enter future work(30) on the existence
of a.s. non-negative processes solving the stochastic thin-film equation.

3.3. Physical Relevance

In this subsection, we sketch a scaling argument which indicates that the
relative change of dewetting time-scales caused by thermal fluctuations has the
right order of magnitude to resolve the discrepancies between physical experiment
and deterministic simulation observed in. (5) Since presently we do not have a
numerical scheme at our disposal for the multi-dimensional SPDE which would
allow for a dimensionalized comparison with the physical experiment, we estimate
noise amplitudes based on the data of (5) and compare them with our results in

Table II. Monitoring the scheme for white noise

driven thin-film flow (lc = 0): Mean rupture time

and standard deviation (averaged over 6 sample

paths each) in terms of spatial discretization pa-

rameters a = 2−g and various noise intensities

T \g 7 8 9

0 13.5 15.7 15.5
5.00 × 10−5 7.3 ± 1.0 7.1 ± 0.9 6.0 ± 0.8
1.25 × 10−3 3.9 ± 1.0 3.1 ± 0.5 2.4 ± 0.6
4.05 × 10−3 2.5 ± 0.5 1.6 ± 0.4 1.4 ± 0.5

Note. Time discretization τ = a5/2. All runs were started
with same initial data.
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Fig. 6. Monitoring the scheme for white noise driven thin-film flow (lc = 0): Mean rupture time
(averaged over six sample paths each) as a function of various noise intensities

√
2 T for several time

discretizations. Errorbars indicate the standard deviation. For τ = a2 and τ = a2.5 errorbars were
shifted to the left and right by 0.002, respectively, for better visibility. Spatial discretization a = 2−9 L .
All runs were started with same initial data.

Subsec. 3.2. So let us return to dimensionalized quantities

η
∂h

∂t
= ∂x

{
h3

3
∂x

[
	′(h) − γ∇2

x h
]+

√
h3

3
N
}

(68)

and

〈N (x, t)N (x ′, t ′)〉 = 2 kB T η δ(x − x ′) δ(t − t ′). (69)

Here, the unit of the noise N is η U√
d

. For the sake of clarity, we use the tilde again
to distinguish between dimensionalized and non-dimensionialized quantities here.
In order to estimate the amplitude T̃ = kB T d

η U λ3 of the noise, we consider the system

studied in, (5) i.e., a polystyrene (PS) film of thickness d ≈ 4 nm on silicon dioxide.
In this case, the thin liquid film is linearly unstable and the characteristic lateral

length scale is given by the dispersive capillary length λ = 4
√

π3 γ d4

A , which is
the most unstable mode in a linear stability analysis of the deterministic part of
Eq. (68). With the Hamaker constant A ≈ 2 × 10−20 nm and the surface tension
coefficient γ ≈ 3 × 10−2 N/m we have λ ≈ 400 nm. The Hamaker constant de-
termines the disjoining pressure �(h) = − A

6 π h3 if we neglect the short-ranged
part of the potential. The viscosity is η ≈ 1200 Ns/m2. In the deterministic part of
Eq. (68) there are two terms which can drive the flow, the disjoining pressure and
the surface tension. The flow associated with each part is of the order of dU and
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from this we derive two characteristic velocities, namely U� = A
6 π d λ η

≈ 0.6 nm/s

and Uγ = d3 γ

3 λ3 η
≈ 8 · 10−3 nm/s, respectively. We have to take the larger of the

two velocities and therefore U ≈ 0.6 nm/s. According to Eq. (8) with this choice
of U the nondimensional disjoining pressure has no free parameter �̃(h̃) = − 1

h̃3

and the noise amplitude is given by T̃ = 3 kB T
8 π2 d2 γ

, i.e., independent of the Hamaker
constant and the viscosity. This result is in fact independent of the form of the
disjoining pressure and also holds if the short-ranged part is included. The exper-
iments were performed at T = 53◦C and we have kB T ≈ 4.5 × 10−21 Nm. This
leads to T̃ ≈ 4 × 10−4. The noise induced current is therefore about two orders
of magnitude smaller than the current induced by the disjoining pressure. With
the rescaling in Eq. (8) and the choice of λ and U from above the nondimensional
surface tension coefficient is γ̃ = 3

8 . Now observe (cf. Figs. 2, 3, and Table I) that
noise intensities of order T̃ ∼ 10−4 diminish the ratio between rupture time-scale
and droplet-formation time-scale in our first numerical experiments by a factor
5. Hence, our results would be of the right order of magnitude to resolve the
discrepancies with respect to time-scales observed in Fig. 1 of. (5) The first image
shows the film just after rupture while the last one gives a rough estimate for the
droplet formation time.

4. CONCLUSIONS

In this paper, we derived a stochastic version of the thin-film equation based
on the lubrication approximation for incompressible stochastic hydrodynamic
equations. (7) We demonstrated its thermodynamic consistency, in particular with
the equilibrium distribution of film thickness. The derivation of the SPDE was
presented in one space dimension, it can, however, be generalized to the higher
dimensional setting in a straightforward way, and we get

∂h

∂t
= ∇ ·

{
h3

3
∇ [

	′(h) − γ ∇2h
]+

√
h3

3
N (t)

}
, (70)

with 〈N (r, t)〉 = 0 and
〈
Ni (r, t)N j (r′, t ′)

〉 = 2 T δi j δ(r − r′) δ(t − t ′). This
stochastic equation can be used to investigate the influence thermal fluctuations
have on (de)wetting dynamics of thin liquid films which has been studied ex-
tensively in the last decades, but theoretically solely by deterministic dynamical
equations. However, thermal noise gains a more and more important role the
smaller the system size becomes.

Recent studies of thin film evolution indicate that thermal noise influences
characteristic time-scales of the dewetting process of linearly unstable thin films. (5)

For an experimental model system the measured film morphology has been
compared quantitatively to the numerical solution of the deterministic thin film
equation with measured microscopic system parameters such as the substrate
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potential 	 and the surface tension γ . One observes the same spatial patterns in
the experiment as well as in the simulation but the time scales do not match.

The numerical solutions presented here are based on a finite-volume scheme
for the discretization of the stochastic thin-film Eq. (70) in one dimension. Our
results cannot be compared to experiments directly but they indicate that thermal
noise accelerates the initial dewetting process of the film rupture while leaving the
time-scale of droplet formation unchanged.

This might resolve the reported discrepancies between experiments and de-
terministic simulations in. (5) In addition, the conserved noise term in the stochastic
thin film Eq. (70) changes the spectrum of fluctuations as compared to the deter-
ministic dynamics considerably. This prediction seem to be confirmed in recent
AFM measurements of the initial states of dewetting of thin polymer films. (31)

Thus, from a physical point of view, it is desirable to develop higher-dimensional
schemes for Eq. (70) and to compare dimensionalized numerical simulations with
physical experiments of thin films.

As a consequence of the results presented here, also a number of interesting
mathematical questions arise. It remains to investigate existence (and uniqueness)
of a stochastic process solving (70), and it will be an issue not only for physical
reasons to prove non-negativity of the paths almost surely. Related to this question
is the problem of analyzing the scheme proposed in Sec. 3, the qualitative behaviour
of solutions as well as their convergence properties in the limit of vanishing
discretization parameters. It might also be inspiring to provide rigorous estimates
for the acceleration effect thermal fluctuations have on dewetting dynamics.

In the course of miniaturisation of electronic and microfluidic devices a
fully quantitative description of Newtonian liquids at surfaces are essential and
requires quantitative stochastic modelling of ultrathin film dynamics as well as
mathematically well-controlled numerical schemes as presented here.

APPENDIX A. MANY STOCHASTIC PROCESSES PER

DEGREE OF FREEDOM

The stochastic thin-film Eq. (32) differs from the stochastic differential equa-
tions as discussed in(20,21) in that there are more stochastic processes S


i (t) than
dependent variables hi (t). However, all the S


i (t) are Gaussian random variables
with zero mean and they are δ-correlated, see Eq. (30). In this appendix we will cal-
culate the Fokker–Planck equation corresponding to such a stochastic differential
equation.

With G

i j (h) = ∇s

i j q
(h j ) we can write Eq. (32) in the form

dh

dt
= F(h) +

∞∑

=0

G
(h) · S
(t), (A.1)
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with

〈S
(t)〉 = 0,
〈
S


i (t)Sm
j (t)

〉 = 2 T δi j δ
m δ(t − t ′), (A.2)

and T = τ/a2. The following arguments do not depend on the explicit form of F
and G
 and both can be generalized to F and G
 which depend on time explicitly.
However, we require that both can be expanded in a Taylor series around any h.
We are interested in the time evolution of the probability W(h, t) to find the h at
time t . This time evolution is in general given by the Kramers–Moyal expansion
(20) (Eq. (4.86))

∂W(h, t)

∂t
=

∞∑
n=1

∑
i1,...,in

(−1)n ∂n

∂hi1 . . . ∂hin

D(n)
i1,...,in

(h)W(h, t), (A.3)

with the Kramers–Moyal expansion coefficients

D(n)
i1,...,in

(h)

= 1

n!
lim

�t→0

1

�t

〈[
hi1 (t + �t) − hi1 (t)

]
. . .

[
hin (t + �t) − hin (t)

]〉
. (A.4)

If the Kramers–Moyal expansion coefficients are zero for n > 2 one calls the
Kramers–Moyal expansion Eq. (A.3) Fokker–Planck equation. We will see that
this is indeed the case for Eq. (A.1) and we will calculate the first and second
expansion coefficient. For general G


i j (h) the second coefficient depends on the
choice of stochastic calculus. In this appendix we use Ito calculus but the following
calculations can be generalized to Stratonovich calculus easily.

In order to calculate the Kramers–Moyal coefficients we use the method
outlined in(20) (Sec. 3.4) for the simpler case when there are not more noise terms
than dependent variables. First we write Eq. (A.1) in integral form

h(t + �t) − h(t) =
t+�t∫
t

[
F(h(t ′)) +

∞∑

=1

G
(h(t ′)) · S
(t ′)

]
dt ′ (A.5)

and get the change of h in a small but finite time interval needed to calculate
the expansion coefficients from Eq. (A.4). We expand F and G
 in the integrand
around h(t), namely the value at the beginning of the integration interval

F(h(t ′)) = F(h(t)) +
∑

i

∂F(h(t))

∂hi

[
hi (t

′) − hi (t)
]+ . . . (A.6)

G
(h(t ′)) = G
(h(t)) +
∑

i

∂G
(h(t))

∂hi

[
hi (t

′) − hi (t)
]+ . . . . (A.7)
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The ellipses stand for terms of higher order in hi (t ′) − hi (t). This we insert in the
integral form Eq. (A.5) and get

h(t + �t) − h(t) =
t+�t∫
t

[
F(h(t)) +

∞∑

=1

G
(h(t)) · S
(t ′)

]
dt ′

+
t+�t∫
t

∑
i

[
∂F(h(t))

∂hi
+

∞∑

=1

∂G
(h(t))

∂hi
· S
(t ′)

]

× [
hi (t

′) − hi (t)
]

dt ′ + . . . . (A.8)

We can expand hi (t ′) − hi (t) in the second term using Eq. (A.8) again and get

h(t + �t) − h(t) ≈
t+�t∫
t

[
F(h(t)) +

∞∑

=1

G
(h(t)) · S
(t ′)

]
dt ′

+
t+�t∫
t

∑
i

{[
∂F(h(t))

∂hi
+

∞∑

=1

∂G
(h(t))

∂hi
· S
(t ′)

]

×
t ′∫

t


Fi (h(t)) +

∑
j

∞∑
m=1

Gm
i j (h(t))Sm

j (t ′′)


 dt ′′

}
dt ′ + . . . .

(A.9)

Iterating these substitutions finally yields an infinite sum of terms only depending
on h(t), i.e., only the value of h at the beginning of the integration interval. In
order to calculate the first Kramers–Moyal expansion coefficient we need to take
the average of Eq. (A.9). Since 〈S
(t)〉 = 0 we are left with

〈hi (t + �t) − hi (t)〉 = Fi (h(t)) �t +
∑
j,k,k ′

∞∑

,m=1

∂G

ik ′(h(t))

∂hk

×Gm
k j (h(t))

〈 t+�t∫
t

t ′∫
t

S

k ′(t ′)Sm

j (t ′′) dt ′′dt ′
〉

+ . . . .

(A.10)

The remaining terms are higher order in �t . Each term on the right-hand side
of Eq. (A.9) is under at least one integral. The order of terms without noise is
therefore given by the number of integrals. Terms containing an odd number of
noises are zero and terms containing an even number of noises, say p, have at
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least p integrals. Each pair of noises gives a delta function in time and therefore
reduces the order of the term by p/2. We only need terms up to linear order in �t
and therefore only terms containing at most two integrals have to be considered.
According to the rules of Ito calculus, the average in the second term is zero and
we get for the first Kramers–Moyal expansion coefficient

D(1)(h(t)) = lim
�t→0

〈h(t + �t) − h(t)〉
�t

= F(h(t)). (A.11)

Next we calculate the second Kramers–Moyal coefficient. We use Eq. (A.9)
and 〈S
(t)〉 = 0 in order to calculate the average in Eq. (A.4)〈

[hi (t + �t) − hi (t)]
[
h j (t + �t) − h j (t)

]〉

=
∑
k,k ′

∞∑

,m=1

G

ik(h(t)) Gm

jk ′(h(t))

〈 t+�t∫
t

S

k (t ′) dt ′

t+�t∫
t

Sm
k ′ (t ′′) dt ′′

〉
+ . . . .

(A.12)

All other terms are either zero or of higher than first order in �t , see the paragraph
after Eq. (A.10). In the limit �t → 0 we get with Eq. (A.2)

D(2)
i j (h(t)) = lim

�t→0

〈
[hi (t + �t) − hi (t)]

[
h j (t + �t) − h j (t)

]〉
2 �t

= T
∑

k

∞∑

=1

G

ik(h(t)) G


jk(h(t)). (A.13)

Using Eq. (A.9) in the definition for higher Kramers–Moyal coefficients,
namely Eq. (A.4) for n > 2, the only terms which are left after taking the average
are of order �t2 or higher. Therefore all higher Kramers–Moyal coefficients are
zero, see also the corresponding argument for the Kramers–Moyal coefficients for
a Langevin equation with only one variable in. (20) (Sec. 3.3.2) The Kramers–Moyal
expansion in Eq. (A.3) therefore collapses to the Fokker–Planck equation

∂W(h, t)

∂t
= −

∑
i

∂

∂hi


Fi (h) − T

∑
j,k

∂

∂h j

[ ∞∑

=1

G

ik(h) G


jk(h)W(h, t)

]
 .

(A.14)

Following the same calculations as presented above, we can immediately
see that the Kramers–Moyal coefficients for the Langevin equation with only one
noise term per dependent variable hi

∂h

∂t
= F(h) + G(h) · N (t), (A.15)
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with

〈N (t)〉 = 0 and 〈Ni (t)N j (t
′)〉 = 2 T δi j δ(t − t ′) (A.16)

are

D(1)(h(t)) = F(h(t)) (A.17)

and

D(2)
i j (h(t)) = T

∑
k

Gik(h(t)) G jk(h(t)). (A.18)

The Fokker–Planck equation is therefore given by

∂W(h, t)

∂t
= −

∑
i

∂

∂hi


Fi (h) − T

∑
j,k

∂

∂h j

[
Gik(h) G jk(h)W(h, t)

] .

(A.19)

The two Langevin Eqs. (A.1) and (A.15) are equal if the probability densities
W(h, t) are equal at any time for equal initial conditions. This means that the
Fokker–Planck equations have to be equal. These are equal if the Kramers–Moyal
coefficients are equal. The first coefficients are equal because the deterministic
parts of Eqs. (A.1) and (A.15) are equal. Therefore we get a condition on G
(h)
and G(h) if we want equality of the second coefficients in Eqs. (A.13) and (A.18),
respectively.

APPENDIX B. DISCRETIZATION OF THE FOURTH-ORDER

DIFFERENTIAL OPERATOR

Let us briefly describe the discretisation of the deterministic thin-film equa-
tion (i.e., Eq. (19) for τ = 0)

∂h

∂t
= ∂x [M(h) ∂x p] (B.1a)

p = −∇2
x h + 	′(h). (B.1b)

Introducing for a small cut-off 0 < σ � 1 the shifted mobility

mσ (h) :=
{

1
3 h3 for h ≥ σ

1
3 σ 3 else,

(B.2)
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we define the discrete mobility Mσ for the finite element approximation H ∈ V N
per

in the subinterval Ei := (xi , xi+1), i = 0, . . . , N − 1, by the formula

Mσ (H )|Ei :=




mσ (H̄i ) if H̄i = H̄i+1

(H̄i+1 − H̄i )

(∫ H̄i+1

H̄i

1

mσ (s)
ds

)−1

if H̄i �= H̄i+1.
(B.3)

Observe that the degeneracy of the equation is mimicked by the fact that Mσ (H )|Ei

becomes small if H̄i or H̄i+1 tend to zero. The σ -truncation in Eq. (B.2) is used
to guarantee wellposedness of Eq. (B.3). In particular, the special choice of Mσ

guarantees that all the integral estimates from the continuous setting carry over to
the discrete setting. Therefore, non-negativity of discrete solutions can be proven
in a natural way, see (2) for more details.

Decomposing 	 into a sum 	 = 	+ + 	− with 	+ non-negative and convex
and 	− concave, the following scheme was suggested in. (32) For given H 0 ∈ V N

per

and n ∈ N, find iteratively functions H n+1 and Pn+1 in V N
per such that

(H n+1 − H n,�)N + τn(Mσ (H n+1)∇ Pn+1,∇�) = 0 (B.4a)

(∇H n+1,∇�) + (	′
+(H n+1), �)N + (	′

−(H n), �)N = (Pn+1, �)N (B.4b)

for all test functions �,� ∈ V N
per . Here, τn = tn+1 − tn is the time-

increment. Introducing the mobility weighted stiffness matrix (L M
N (H̄ ))i j :=∫

I Mσ (H̄ )∇φi∇φ j , the system (B.4) is written equivalently in matrix form as
follows. For given H̄ n ∈ R

N , find H̄ n+1 ∈ R
N such that

H̄ n+1 − H̄ n + τn M−1
N · L M

N (H̄ n+1) · [M−1
N · L N · H̄ n+1

+	′
+(H̄ n+1) + 	′

−(H̄ n)
] = 0. (B.5)

Note that M−1
N L M

N (H̄ n+1)M−1
N L N is a sparse matrix since the lumped masses

matrix MN is diagonal. For the uniform discretization used here the diagonal
elements of MN are a and we can replace M−1

N in Eq. (B.5) by 1
a . With 	′

±(H̄ ) we
denote the component vector of 	′

±(H ).

APPENDIX C. ITO VS. STRATONOVICH CALCULUS

In Appendix A we calculate the Kramers–Moyal expansion coefficients in
Ito calculus. In this section we will show, that for the stochastic thin film Eqs. (17)
and (19) Ito and Stratonivich calculus are equivalent by showing that the spurious
drift term in the first Kramers–Moyal expansion coefficients vanishes.

The only point in Appendix A where the difference between Ito and
Stratonovich calculus becomes important is the evaluation of the stochastic in-
tegrals in the second term on the right hand side of Eq. (A.10). The result for
Stratonovich calculus can be obtained by assuming that the δ-function in Eq. (A.2)
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is symmetric with respect to the argument and we get for the first Kramers–Moyal
expansion coefficient

D(1)(h(t)) = F(h(t)) + T
∑
k,k ′

∞∑

=1

∂G

ik ′(h(t))

∂hk(t)
G


kk ′(h(t)). (C.1)

The difference to the first Kramers–Moyal expansion coefficient in Ito calculus in
Eq. (A.11) is the second term on the right hand side, the so-called spurious drift
term. We get with G


i j (h) = ∇s
i j q
(h j ) for the spurious drift term for Eq. (32)

T
∑
k,k ′

∞∑

=1

∇s
ik ′

∂q
(hk ′)

∂hk
∇s

kk ′ q
(hk ′) = 0. (C.2)

The reason is, that ∂q
(hk′ )
∂hk

= δkk ′ ∂q
(hk )
∂hk

is symmetric in k and k ′, while the sym-
metric finite difference operator ∇s

kk ′ is antisymmetric in k and k ′. With the same
argument the spurious drift term for Eq. (33) vanishes.

Since the only difference between Ito and Stratonovich calculus is the spu-
rious drift term, the Fokker–Planck equation for Eqs. (32) and (33) are equal and
therefore independent of the calculus used.
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